На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

Реферати > Математика > Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

,

звідки

.

Інтегруючи це рівняння й повертаючись від змінної до змінної , отримуємо загальний розв’язок однорідного рівняння.

Прикладі 2. Розв’язати рівняння .

Р о з в ‘ я з о к. Це рівняння однорідне. Виконаємо у цьому рівнянні заміну залежної змінної Тоді

.

Відокремлюючи змінні, одержуємо: , звідки

.

Отже, загальний розв’язок рівняння має вигляд .

Приклад 3. Покажемо, як розв’язується рівняння, наведене в прикладі 3, за допомогою полярних координат.

Перейдемо до нових змінних та за формулами

.

Звідси

Отже,

.

Права частина рівняння у нових координатах набуває вигляду

Прирівнюючи праву і ліву частини рівняння, дістанемо

.

На основі властивості пропорції позбудемося дробів:

Спрощуючи це рівняння, отримаємо

.

Відокремлюємо змінні

.

Інтегруємо

.

(довільну сталу позначили як ) . Звідси .

Повернемось до старих змінних та й спростимо вираз. Отримаємо шуканий загальний інтеграл

або .

Зауваження. До однорідних рівнянь зводяться диференціальні рівняння вигляду

(12.12)

1. У разі, коли , слід виконати заміну змінних, де і - сталі, підібрані таким чином, щоб рівняння (12.12) перетворилося на однорідне рівняння вигляду

.

Оскільки та ,

сталі і слід підібрати так, щоб виконувались рівняння

Ця система має єдиний розв’язок (згідно з умовою ).

2. Якщо , то , оскільки , та . В цьому разі рівняння (12.12) подамо у вигляді

. (12.13)

Якщо в цьому рівнянні виконати заміну змінної за формулою , то рівняння (12.13) перетвориться у диференціальне рівняння з відокремлюваними змінними. Справді, маємо і , отже, .

Перейшовши до нової змінної у рівнянні (12.13), одержимо рівняння

,

у якому змінні легко відокремлюються.

Приклад 4. Розв’язати рівняння

.

Р о з в ‘ я з о к. Це - диференціальне рівняння вигляду (12.13). Перевіримо, чи виконується для нього нерівність . Отже, в цьому рівнянні слід виконати заміну змінних та за формулами . Підставимо нові змінні у вихідне рівняння:

.

Для визначення і отримаємо алгебраїчну систему двох лінійних рівнянь

головний визначник якої дорівнює і, отже, система має єдиний розв’язок:, . Це дозволяє виконати заміну змінних і: ,

в результаті якої отримуємо однорідне рівняння . Виконаємо в цьому рівнянні заміну змінної за формулою . Маємо .

Відокремлюємо змінні та :

.

Загальний інтеграл цього рівняння має вигляд

або

.

Враховуючи виконані заміни змінних, маємо:

.

Отже, загальний інтеграл вихідного рівняння

або, після спрощень,

.

12.4. Лінійні диференціальні рівняння першого порядку

Лінійними диференціальними рівняннями першого порядку називається рівняння, лінійне відносно невідомої функції та її похідної:

(12.14)

де - задані неперервні функції від .

Якщо, зокрема, , то рівняння

(12.15)

називається лінійним однорідним (або без правої частини), а рівняння (12.14), в якому - неоднорідним.

Однорідне рівняння (12.15) – це диференціальне рівняння з відокремлюваними змінними. Відокремлюємо змінні:

.

Загальний інтеграл рівняння

,

а загальний розв’язок однорідного рівняння (12.15)

(12.16)

Щоб відшукати загальний розв’язок рівняння (12.14), використаємо так званий метод варіації довільної сталої Лагранжа. Суть його полягає в тому, що розв’язок рівняння (12.14) шукатимемо у вигляді, аналогічному (12.16), але вважатимемо у цій формулі не сталою, а невідомою функцією від :

Перейти на сторінку номер: 1  2  3  4  5 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат