На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Теореми про диференціальні функції

Реферати > Математика > Теореми про диференціальні функції

Правило Лопіталя

Теорема 1. Нехай в околі точки а задано неперервно диференційовані функції f(x), φ(x). Причому f(а) = φ(а) = 0. Тоді в разі існування границі відношення похідних цих функцій при х ® а існує і границя відношення самих функцій при х ® а:

(1)

Доведення. Розглянемо деякий відрізок з околу точки а, на якому для функцій f (x) і φ(x) виконуються умови теореми Коші. Отже між точками а і х, знайдеться точка ξ, така що

або

(2)

Переходячи в рівності (2) до границі при х ® а і враховуючи теорему про границю частки двох функцій, дістаємо (1).

Зауваження 1. Правило Лопіталя можна застосувати кількаразово, якщо для відповідної функції або похідної виконуються умови теореми Коші.

Зауваження 2. Функції f(x), φ(x), які неперервними і диференційованими в околі точки х = а, у самій точці а можуть бути не визначеними. Але якщо існують границі

то можна застосувати правило Лопіталя до відношення

Якщо функції f(x) і φ(x) невизначені в точці х = а, то визначаємо значення функцій f(x) і φ(x) та їх граничні значення при х ® а:

це можна зробити, оскільки ми розглядаємо границю відношення функцій, припускаючи, що в околі точки а виконується умова теореми Коші.

Теорема 2. Нехай функції f(x) і φ(x) неперервні і диференційовані на пів прямій с < х < ¥ (–¥ < х < с), причому φ(x) на цій півпрямій не перетворюється на нуль і водночас виконуються рівності:

Тоді, якщо існує , то існує і та справджується рівність

. (3)

Доведення. Покладемо . Отже, якщо x ® ¥ , то z ® 0. Маємо:

.

Розглянемо границю відношення

.

Якщо ця границя існує, то існує й границя .

На підставі здобутих результатів можемо розглядати границі відношення нескінченно малих величин.

Границя відношення нескінченно малих величин дорівнює границі відношення їх похідних, якщо остання існує у зазначеному щойно сенсі.

Приклад

Теорема 3. Нехай функції f(x) і φ(x) в околі точки х = а неперервні і диференційовані, причому φ¢(х) ¹ 0 . Тоді в разі виконання рівностей та існування існує і

(4)

Доведення. Розглянемо деякий окіл точки а, в якому виконується умова теореми. У цьому околі візьмемо деяку точку й розглядатимемо х із інтервалу α < х < а ( аналогічно а < х < α ).

Застосуємо до відрізка теорему Коші:

Отже,

За умовою . Звідси випливає, що для будь–якого малого ε > 0 виконується нерівність

,

або

. (5)

Знайдемо

Виберемо α так, щоб для заданого ε справджувалась нерівність (5) і при х ® а виконувались співвідношення: f(x) ® ¥ і φ(x) ® ¥. Тоді

або

. (6)

Перемножимо почленно (5) і (6):

. (7)

Вибираючи значення ε достатньо малим і переходячи в останній нерівності до границі при х ® а, дістаємо (4).

Аналогічно розглядається випадок, коли х ® ¥.

Якщо f(x) і φ(x) неперервно диференційовані на півпрямій с < х < ¥ (–¥ < х < с ) φ¢(х) ¹ 0, причому існує , то існує і :

(8)

Границя відношення нескінченно великих величин дорівнює відношенню їх похідних у разі існування останніх.


Приклад

Зауваження. У формулах (4), (8) з існуванням границь відношення похідних випливає існування відношення функцій. Обернене твердження не буде правильним.

Приклад. Обчислити

Згідно з правилом Лопіталя маємо:

Отже, границя даної функції не існує, оскільки не існує .

Але

L Зауваження. Правило Лопіталя є ефективним методом розкриття невизначеностей. Проте застосування його не завжди дає змогу спростити здобутий вираз і знайти шуканий результат.

& Приклад. Знайти .

Якщо застосувати правило Лопіталя вдруге, то функція під знаком границі набере початкового вигляду. Таким чином, за цим правилом не вдається розкрити невизначеність.

Але

ВИСНОВОК:

Невизначеності виду можна розкривати за правилом Лопіталя (1),(4),(8).

Застосування правила Лопіталя для розкриття невизначеностей виду

І. Невизначеність виду

за допомогою перетворень зводиться до невизначеностей або , а далі застосовується правило Лопіталя.

Знайти границю , якщо .

Перейти на сторінку номер: 1  2  3 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат