На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Числові послідовності

Реферати > Математика > Числові послідовності

План

· Числові послідовності.

· Границя, основні властивості.

· Границя монотонної послідовності і функції.

· Нескінченно малі і нескінченно великі величини, їх властивості.

· Порівняння величин.

· Еквівалентні нескінченно малі величини.

Числові послідовності

1. Означення числової послідовності

Дамо означення нескінченної числової послідовності та опишемо деякі з них.

Означення. Нескінченною числовою послідовністю називається сукупність чисел, кожному з яких присвоєно певний порядковий номер

(5.1)

де числа - члени послідовності, відповідно, перший, другий і т.д.; - - й, або загальний член послідовності.

Числову послідовність записують або у вигляді ряду чисел (5.1) або у вигляді Числова послідовність вважається заданою, якщо вказано закон або правило, за допомогою якого кожному натуральному числу ставиться у відповідність дійсне число Опишемо основні способи задання цього правила.

Спосіб 1. Правило може бути задане формулою, якою задається загальний член послідовності

Приклади.

1. Відповідна числова послідовність має вигляд

.

2. Дана послідовність має вигляд .

Спосіб 2. При заданні послідовності задають кілька її початкових членів і правило (майже завжди це формула) утворення -го члена за допомогою попередніх членів. Такий спосіб називається рекурентним.

Наприклад, нехай Так задано послідовність .

Спосіб 3. У деяких випадках може бути невідома формула загального члена послідовності, і також не задано рекурентне співвідношення, а послідовність задається словесно. Наприклад, нехай є десятковим наближенням квадратного кореня із з надбавкою з точністю до Тоді перші члени цієї послідовності мають вигляд:

Геометрично члени послідовності зображаються точками на числовій осі.

Серед числових послідовностей в окремий клас виділяють монотонні послідовності, що об’єднують в собі зростаючі, спадні , неспадні, не зростаючі послідовності.

Означення . Послідовність називається зростаючою, якщо кожний її наступний член більший від попереднього, тобто для кожного

Приклад. У послідовності кожний наступний член більший від попереднього. Отже, задана послідовність є зростаюча.

Означення . Послідовність називається неспадною, якщо для кожного

Приклад. Якщо покласти (означає функцію рантьє), то дістанемо неспадну послідовність .

Означення . Послідовність називається спадною, якщо

для кожного

Приклад. Послідовність є спадна.

Означення . Послідовність називається незростаючою, якщо для кожного .

Приклад . Якщо взяти то дістанемо незростаючу послідовність.

Для дальшого вивчення числових послідовностей слід ввести поняття обмежених і необмежених послідовностей.

Означення . Послідовність називається обмеженою зверху, якщо існує дійсне число таке, що для всякого виконується нерівність .

Послідовність називається обмеженою знизу, якщо існує дійсне число таке, що для всіх виконується нерівність

Приклади .

1. Якщо взяти дістанемо послідовність обмежену зверху , оскільки

2. Якщо взяти дістанемо послідовність обмежену знизу, оскільки

Означення . Послідовність називається обмеженою, якщо вона обмежена і зверху, і знизу, у противному разі – необмеженою.

Приклади .

1. Нехай Послідовність

є обмежена

Послідовність не є обмежена .

Наведемо ще такі формулювання означення обмежених та необмежених послідовностей .

Послідовність називається обмеженою, якщо для всіх

Покладемо Послідовність називається обмеженою, якщо

Перейти на сторінку номер: 1  2  3 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат