На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Моделі поведінки виробників

Реферати > Економічні теми > Моделі поведінки виробників

Таблиця 2.

Отже, умовою максимізації прибутку є: . Це рівняння є рівнянням рівноваги,тому що лише у випадку (а для конкурентної фірми ), фірма не буде мати стимулів до зміни обсягів виробництва, оскільки будь-яка зміна не поліпшить показників прибутку.

Проілюструємо справедливість рівняння рівноваги за допомогою табличної моделі . У таблиці 2 представлені розрахунки граничних показників і , а також середніх сукупних і середніх змінних витрат, виконані на основі даних таблиці 8.1.

Проаналізуємо співвідношення між граничним виторгом і граничними витратами (колонки 3 і 5). Перша одиниця продукції дає фірмі граничний виторг, рівний ціні (35 грн.), а граничні витрати фірми, пов’язані з її виробництвом, – 34 грн., отже, прибуток становить 1 грн. Друга одиниця додає до витрат 22 грн., а до виторгу – 35 грн. (ціна незмінна), і таким чином збільшує сумарний прибуток на 13 грн. Доки граничний виторг перевищує граничні витрати, фірмі вигідно нарощувати обсяги випуску, тому що це збільшує суму прибутку. Ця тенденція зберігається до шостої одиниці випуску включно, а вже сьома одиниця продукції додає до витрат 38 грн., що перевищує граничний виторг у 35 грн., тому прибуток зменшиться на 3 грн. Зрозуміло, що фірма припинить нарощування виробництва після шостої одиниці. Керуючись граничним принципом вибору, фірма буде збільшувати виробництво малими приростами і так знайде саме той обсяг, який максимізує прибуток. Це буде обсяг, за якого ціна і витрати стануть приблизно рівними .

Графічна модель зводить задачу максимізації економічного прибутку до пошуку точки перетину графіків функцій граничних витрат і граничного виторгу (рис. 2.3). Припустимо, що фірма виробляє обсяг продукції . Для цього обсягу . Тому, обмеживши випуск кількістю , фірма втрачає частину можливого прибутку в розмірі площі . Якщо вона розширить випуск до (точка ), то зможе збільшити суму прибутку. Якщо фірма буде нарощувати обсяги виробництва далі, до обсягу , то , а збитки величиною площі зменшать загальну суму отриманого прибутку. В цій ситуації фірма зможе збільшити прибуток, скоротивши випуск до , що відповідає точці . Таким чином, рівновага фірми, за якої вона максимізує прибуток, встановлюється в точці перетину кривих і .

Далі фірма повинна визначитись, чи варто виробляти продукцію взагалі. Рішення про доцільність виробництва фірма може прийняти лише після оцінки його прибутковості. У моделі фірма має справу з середніми і граничними величинами, тому для визначення суми прибутку треба зробити перетворення: .

Звідси .

Графічно суму прибутку на оптимальному обсязі (рис. 2.4) можна визначити як площу прямокутника , висота якого дорівнює , а основа – обсягу виробництва . За даними графіка: =(35-31,7)´ 6,3=20,16 грн. [2: \]

2.2 Модель фірми на конкурентному ринку.

За досконалої конкуренції, коли учасників ринку багато, ціни на ринку не залежать від окремих виробників і споживачів. Коли ж, навпаки, учасників ринку небагато, ціни на ринку залежать від стратегій, що їх дотримуються ці учасники.

Розглянемо приклад з двома конкурентами, що виробляють одну й ту саму продукцію, кожен згідно зі своєю виробничою функцією: (2.1)

У цьому разі ціна продукції залежить від обох випусків (обох учасників): (2.2)

причому вона знижується зі зростанням випуску:

Ціни на ресурси залежать від обсягів їх купівлі: (2.3)

Ціни зростають за зростання попиту:

кожна фірма прагне максимізувати свій прибуток. Наприклад, перша фірма повинна діяти таким чином:

(2.4)

за умови

Функція Лагранжа має вигляд:

Виключивши з 1-ого рівняння, одержимо (n+1) рівняння для визначення стратегії першої фірми:

(2.5)

Розв’язок цих рівнянь залежить від

Останні є очікуваною реакцією другої фірми на стратегію першої.

Перейти на сторінку номер: 1  2  3  4  5  6  7  8  9 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат