На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Похідна функції

Реферати > Математика > Похідна функції

.

Звідси .

Таким чином, дістали формулу для знаходження похідної від степенево-показникової функції виду (4.5).

. (4.7)

У даному випадку формула (4.7) виглядає як

.

Похідні вищих порядків

Похідна від функції називається похідною першого порядку і являє собою деяку нову функцію. Мож­ливі випадки, коли ця функція сама має похідну. Тоді похідна від похідної першого порядку називається похідною другого порядку від функції і позначається .

Похідна від похідної другого порядку називається похід­ною третього порядку і позначається , .

Похідна від похідної (n – 1)-го порядку називається похідною n-го порядку і позначається .

Таким чином,

Приклад. Знайти похідну третього порядку для функції .

l .

ЛІТЕРАТУРА

1. Бугров Я. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. — М.: Наука, 1988. — 240 с.

2. Бугров Я. С., Никольский С. М. Дифференциальное и интегральное исчисление. — М.: Наука, 1988. — 432 с.

3. Бугров Я. С., Никольский С. М. Дифференциальные уравнения, интегралы, ряды, функции комплексного переменного. — М.: Наука, 1989. — 464 с.

4. Овчинников П. Ф., Яремчук Ф. П., Михайленко В. М. Высшая математика. — К.: Вища шк., 1987. — 552 с.

5. Пак В. В., Носенко Й. Л. Вища математика. — К.: Либідь, 1996. — 440 с.

6. Пискунов Н. С. Дифференциальное и интегральное исчисление. — Т. 1, 2. — М.: Наука, 1985. — 580 с., 602 с.

7. Збірник задач з вищої математики / За ред. Ф. С.Гудименка. — К.: КУ, 1967. — 352 с.

8. Клетеник Д. В. Сборник задач по аналитической геометрии. — М.: Наука, 1986. — 224 с.

9. Берман Г. Н. Сборник задач по курсу математического анализа. — М.: Наука, 1975. — 416 с.

10. Задачи и упражнения по математическому анализу (для вузов) / Под ред. Б. П. Демидовича. — М.: Наука, 1968. — 472 с.

11. Стрижак Т. Г., Коновалова Н. Р. Математический анализ. — К.: Либідь, 1995. — 240 с.

Перейти на сторінку номер: 1  2  3  4 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат