На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Астрофизика


Ограничение на длину инструмента и потребность иметь большое поле зрения привели к выбору оптической системы Ричи-Кретьена, в которая широко применяется и в современных наземных рефракторах. Главное и вторичное зеркала соответственно имеют форму вогнутого и выпуклого гиперболоидов и находятся на расстоянии 4,9 м друг от друга (эквивалентное фокусное расстояние 58 м). К качеству изготовления оптики предъявлялись исключительно высокие требования: например, поверхность главного зеркала не должна отклонятся от расчетной более чем на 10 нм.

Оптические детали телескопа крепятся к ферме из графито-эпоксидного композиционного материала, способной сохранять их взаимное расположение с точностью до 1 мкм, несмотря на перепады температуры. Требования к механической прочности конструкции связаны с 3-4 кратными перегрузками, возможными при взлете и посадке МТКК, а отнюдь не с условиями работы телескопа на орбите. Общая масса спутника 10.4 т.

В отличии от наземных телескопов Космический телескоп им. Хаббла будет работать и при ярком солнечном свете. Поэтому передний конец трубы телескопа существенно удлинен за счет светозащитной бленды, внутри трубы имеется система диафрагм, покрытых «особо» черной краской, способной отражать менее 1% падающего света и не давать бликов. Несмотря на эти меры, по-настоящему «темное» небо телескоп сможет регистрировать только тогда, когда объект наблюдения находится на угловых расстояниях более 50° от Солнца, 70° от освещенной части Земли и 15° от Луны.

Система ориентации Космического телескопа им. Хаббла построена на основе силовых гироскопов. Грубое наведение с точностью 1¢ будет осуществляется с помощью звездных датчиков и гироскопов – датчиков скорости (положение их осей время от времени должно уточнятся по звездам). Однако расчетное качество изображения, получаемое с помощью 2,4-метрового телескопа на длине волны 0,5 мкм, равно 0,05¢¢, и чтобы использовать это преимущество перед наземными инструментами, требуется обеспечивать стабилизацию телескопа с еще более высокой точностью.

Направление оптической оси телескопа определяется тремя датчиками точного гидирования по изображениям звезд более ярких, чем 1,4m, в периферийной части поля зрения телескопа, разбитой соответственно на 3 сектора. По команде датчики начинают поиск гидировочных звезд, перемещаясь по спирали с центром в расчетном положении. Критериями правильности захвата нужных звезд служат значения их яркости и взаимное расположение. В случае неудачи поиск повторяется, затем переходят к поиску запасных звезд (если таковые имеются). Очевидно, выбор звезд должен производиться заранее, и это очень трудоемкая работа. Более того, точность координат существующих звездных каталогов, как правило, недостаточна, поэтому запуску Космического телескопа им. Хаббла должно было предшествовать фотографирование всего неба на наземных телескопах с большим полем зрения и составление специального каталога гидировочных звезд с точно известными положениями.

Датчики точного гидирования относятся к числу наиболее сложных систем телескопа и включают в себя прецизионные механические узлы, диссекторные телекамеры и даже интерфомометры. Небольшие смешения звезды в поле зрения соответствуют изменению разности фаз световых волн, приходящих на противоположные края зеркала телескопа: изменяются интенсивности интерферирующих пучков, и на выходе датчика возникает сигнал ошибки. При точности гидирования 0,007¢¢ время реакции датчиков точного гидирования должно быть меньше 1 с, и не только потому, что возможны быстрые колебания самого спутника, но и поскольку все звезды смещаются в поле зрения из-за аберрации света вследствие движения спутника по орбите.

К тому же с помощью Космического телескопа им. Хаббла будут наблюдаться и планеты, достаточно быстро перемещаться на фоне звезд. Однако с данной системой наведения этот телескоп не сможет наблюдать земную поверхность. Следует отметить, что неполадки при работе датчиков точного гидирования до последнего момента заставляли сомневаться в их работоспособности.

Как бы не был совершенен орбитальный телескоп, без светоприемной аппаратуры он «слеп». Выбор типа светоприемника для Космического телескопа им. Хаббла оказался не прост. Всерьез обсуждались возможность применения фотопленок, столь долго и успешно служивших астрономам на Земле. К сожалению, в условиях космоса высокочувствительные пленки постепенно темнеют из-за воздействия проникающей радиации, и поэтому их пришлось бы доставлять на Землю не реже одного раза в месяц. Однако частые посещения орбитального телескопа нежелательны как с экономической, так и с технической точки зрения. Отражающее покрытие зеркала (пленка алюминия и фтористого магния) очень чувствительно к газовой атмосфере, окружающей всякий крупный (а тем более маневрирующий) космический объект, поэтому плотная крышка будет открываться лишь после удаления МТКК и вновь закрываться с его приближением.

В 1973 году было решено использовать электронные приемники изображения, лучшим из которых считалась разрабатываемая в Принстонском университете Р. Даниельсоном и его сотрудниками передающая телевизионная трубка секон. Каково же было разочарование его создателей, когда в 1977 г. стало известно о резкой переориентации руководителей программы на твердотельные приемники. Это было смелое решение, ибо технология создания таких приемников насчитывала тогда всего несколько лет, и в астрономии они еще не использовались.

В настоящее время эти ПЗС-приборы – приборы с зарядовой связью – можно увидеть чуть ли не на каждом американском телескопе, и их преимущества хорошо известны: высокий квантовый выход, доходящий до 60%, большое количество чувствительных элементов, малый шум, большой рабочий диапазон изменения яркости объекта и высокая геометрическая стабильность.

3 Использование приведенного материала в учебном процессе.

3.1 Включение материала в темы занятий по физике, естествознанию (рекомендации для учителя).

На весь курс астрономии в программе средней школы отводится мало времени. За это время ученики должны освоить астрономию, сферическую астрономию, астрофизику, космологию и космогонию. Целостный курс астрономии практически распадается на ряд ознакомительных разделов, теряя филосовско-мировозренческое значение.

Одним из выходов видится экономия времени за счет введения различных элементов астрономических знаний в курс других школьных дисциплин в качестве иллюстративного материала. Например, развитие представлений о строении Солнечной системы – в истории; определение географических координат астрономическими методами, основы измерения времени – в географию; законы Кеплера, источники энергии Солнца, определение радиальной составляющей скорости звезд на основе эффекта Доплера – в физику; определение пространственной скорости звезд – в физику и геометрию; определение расстояний до звезд и до тел Солнечной системы – в геометрию; химический состав планет и звезд – в химию и т.п.

Хотя эти элементы будут просто иллюстрировать законы, изучаемые в данных дисциплинах, в курсе астрономии учитель уже сможет опираться на них. Время, требуемое для активизации знаний, значительно меньше чем для изучения.

Перейти на сторінку номер: 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 
Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат