На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Захист населення у надзвичайних ситуаціях

Реферати > Військова справа, ДПЮ > Захист населення у надзвичайних ситуаціях

Прилади радіаційної, хімічної розвідки і дозиметричного контролю

Для організації захисту населення від уражальної дії зброї масового знищення, зокрема від радіоактивного і хімічного зараження, проводяться вимірювання стану нав­колишнього середовища за допомогою спеціальних при­ладів.

ВІЙСЬКОВИЙ ПРИЛАД ХІМІЧНОЇ РОЗВІДКИ

Військовий прилад хімічної розвідки (ВПХР) служить для визначення у повітрі, на місцевості, на техніці наяв­ності отруйних речовин: зарину, зоману, іприту, фосгену, дифосгену, синильної кислоти, хлорціану, а також парів V-газів у повітрі (мал. ).

Принцип визначення наявності і типу ОР полягає у примусовому, за допомогою всмоктувального насоса, прокачуванні крізь індикаторні трубки повітря. Зміна кольо­ру наповнювача індикаторних трубок свідчить про на­явність, приблизну концентрацію і групу ОР.

Індикаторні трубки (мал. ) бувають трьох видів: з червоним кільцем і червоною крапкою — для визна­чення ОР типу зарин, зоман, V-гази; з трьома зеленими кільцями — для визначення ОР типу фосген, дифосген, синильна кислота, хлорціан; із жовтим кільцем — для визначення ОР типу іприт.

Для визначення отруйних речовин у повітрі потріб­но: відкрити кришку приладу, відсунути засувку і вий­няти насос. З касети вийняти дві трубки з червоним кільцем і червоною крапкою, надрізйти їх кінці і розкри­ти. Ампуловідкривачем з маркіруванням, що відповідає маркіруванню індикаторних трубок, розбити верхні ам­пули трубок, взяти їх за маркіровані кінці і енергійно струснути 2—3 рази. Вставити дослідну трубку не-маркірованим кінцем у гніздо насоса і накачати повітря (5—6 качань). Контрольну трубку помістити у гніздо в корпусі приладу.

Потім розбити нижні ампули обох тру­бок, струснути і спостерігати за зміною забарвлення на­повнювача. Якщо червоний колір наповнювача у дослідній трубці зберігається, а в контрольній пожовтів, то це означає наявність ОР. Одночасне пожовтіння напов­нювача в обох трубках — відсутність ОР в небезпечних концентраціях. Визначення цих ОР у безпечних концент­раціях проводять так само, але роблять 50—60 накачу­вань і нижні ампули розбивають через 2—3 хв.

Незалежно від того, що покаже трубка з червоним кільцем і червоною крапкою, слід продовжити визначен­ня ОР за допомогою трубок, що залишилися: спочатку з трьома зеленими кільцями, потім з одним жовтим кільцем.

Відкрити індикаторну трубку з трьома зеленими кільцями, розбити ампулу, енергійно струснути її, вста­вити у гніздо насоса і зробити 10—15 качань. Вийняти грубку з гнізда і порівняти забарвлення наповнювачів з кольоровим еталоном на лицьовому боці касети, визна­чити наявність у повітрі парів іприту за допомогою інди­каторної трубки із жовтим кільцем. Відкрити трубку, вставити у гніздо насоса і зробити 60 качань. Спостеріга­ти зміну забарвлення наповнювача через 1 хв; порівняти його зі зразком на касеті. Для обстеження повітря за до­помогою індикаторних трубок із червоним кільцем і чер­воною крапкою при низьких температурах (+5° С і ниж­че) потрібно підготувати грілку до роботи: вставити до

упору в центральне гніздо грілки патрон, ударом руки по головці ампуловідкривача розбити ампулу, що у патроні, занурити ампуловідкривач до кінця і не виймати його з патрона до припинення виділення пари; вставити дві трубки у бічні гнізда грілки, після відтавання ампул трубки негайно вийняти і помістити в штатив; відкрити трубки, розбити верхні ампули, енергійно 2—3 рази стру­снути і прокачати повітря через дослідну трубку.

Контрольну трубку тримати у штативі і виконати та­кі дії: підігріти обидві трубки у грілці протягом 1 хв, піс­ля чого розбити нижні ампули дослідної і контрольної трубок і струснути їх одночасно; спостерігати за змінами забарвлення наповнювача трубок.

У концентраціях, що не викликають небезпеки, по­рядок роботи з трубками такий самий: після всмоктуван­ня повітря витримати трубки протягом 2—3 хв, у грілці — 1 хв, поза грілкою (у штативі) — 1—2 хв.

Слід пам'ятати, що перегрівання трубки призводить до її псування.

Насадкою до насоса визначають ОР в диму, на ґрун­ті, в озброєнні, на бойовій техніці, обмундируванні та ін­ших предметах, а також у сипучих продуктах.

Догляд і зберігання приладу здійснюється згідно з ін­струкцією щодо його експлуатації.

РАДІОАКТИВНІ ВИПРОМІНЮВАННЯ

І МЕТОДИ ЇХ ВИМІРЮВАННЯ

Під час вибуху ядерного боєприпасу утворюється ве­лика кількість радіоактивних речовин, ядра атомів яких здатні розпадатись і перетворюватись у ядра інших еле­ментів, випускаючи при цьому невидимі випромінюван­ня. Вони забруднюють місцевість, будівлі й різні предме­ти, діють на людей і тварин. Випромінювання радіоак­тивних речовин можуть бути трьох видів: гамма-випро­мінювання, бета-випромінювання, альфа-випромінювання.

Гамма-випромінювання — це електромагнітні хвилі, аналогічні рентгенівським променям. Поширюються у по­вітрі зі швидкістю 300 000 км/с. Здатні проникати через товщу різноманітних матеріалів. Становлять основну не­безпеку для людей, бо іонізують клітини організму.

Бета-випромінювання — це потік електронів, які називаються бета-частинками. Швидкість їх руху може

досягати в деяких випадках швидкості світла. Проникаю­ча здатність їх менша за гамма-випромінювання, але іо­нізуюча дія в сотні разів більша.

Альфа-випромінювання — це потік ядер атомів гелію, які називаються альфа-частинками. В них дуже висока іонізуюча дія. Область розповсюдження альфа-частинок у повітрі сягає всього 10 см, а в твердих та рідких тілах — ще менше. Одяг, засоби індивідуального захисту повністю затримують альфа-частинки. Внаслідок високої іонізуючої дії альфа-частинки дуже небезпечні у разі проникнення всередину організму.

Нейтрони утворюються тільки в зоні ядерного вибуху, їх іонізуюче випромінювання не має ні кольору, ні запа­ху,— людина їх не відчуває.

Основні методи виявлення і вимірювання іонізуючих випромінювань — фотографічний, хімічний, сцинтиляцій­ний та іонізаційний.

Фотографічний метод засновано на впливі іо­нізуючих випромінювань на світлочутливий шар фото­плівки, щільність потемніння якої пропорційна дозі оп­ромінення.

Хімічний метод грунтується на здатності іонізу­ючих випромінювань спричинювати хімічні зміни деяких речовин, що супроводжуються появою нового забарвлення розчину цих речовин.

Сцинтиляційний метод використовує явище світіння (сцинтиляції) деяких речовин під впливом іонізу­ючих випромінювань. Кількість спалахів пропорційна ін­тенсивності випромінювання.

Іонізаційний метод використовує явище іоніза­ції атомів речовин під впливом іонізуючого випромінювання, внаслідок якого електричне нейтральні атоми розпадаються й утворюють іони. Якщо в опромінювану речовину помісти­ти електроди і подати до них напругу від джерела постійно­го струму, то виникає іонний струм, сила якого пропорційна інтенсивності випромінювання. Цей метод є основним, і йо­го нині використовують в усіх дозиметричних приладах.

ПРИНЦИПИ ДІЇ ДОЗИМЕТРИЧНИХ ПРИЛАДІВ

Прилади, призначені для виявлення і вимірювання радіоактивних випромінювань, називаються дозимет­ричними (мал. ). їх основними елементами є приймальний пристрій (1), підсилювач іонізаційного стру­му (2), вимірювальний прилад (3), перетворювач стру­му (4), джерело живлення (5).

Приймальний пристрій складається з іонізаційної камери або газорозрядного лічильника.

Іонізаційна камера — це заповнений повітрям замк­нутий простір з двома ізольованими один від одного елек­тродами: корпус камери вкрито зсередини шаром струмо-провідної речовини. Цей шар разом з осердям є позитив­ним електродом камери, а негативним — металеве кільце, вихід з якого — через ізолятор. До електродів працюючої камери надходить напруга від джерела постійного струму, тому між її електродами виникає електричне поле. Під дією іонізуючих випромінювань деякі молекули повітря втрачають електрони і стають позитивно зарядженими іонами. Іони й електрони під впливом електричного поля переміщуються, і в ланцюгу камери виникає іонізуючий струм (мал. ). Величина цього струму пропорційна ве­личині радіоактивного випромінювання.

Газорозрядний лічильник — це порожнистий метале­вий циліндр, що служить катодом; його заповнено су­мішшю інертних газів з невеликою кількістю галогенів. Анодом є металева нитка, натягнена всередині циліндра і з'єднана з позитивним полюсом джерела живлення. Ви­води анода і катода зроблені через ізолятори, розташовані у торцях корпуса лічильника. На відміну від іонізацій­них камер газорозрядні лічильники працюють у режимі

ударної іонізації (мал. ). Іонізуючі випромінювання, потрапивши у лічильник, утворюють у ньому первинні електрони і позитивні іони; електрони під дією електрич­ного поля переміщуються до анода лічильника і, здобувши кінетичну енергію, самі вибивають електрони з атомів га­зового середовища. Це явище й називається ударною іоні­зацією. Вибиті вторинні електрони також розганяються і разом з первинними підсилюють ударну іонізацію. Якщо у лічильник потрапляє хоча б одна частка іонізуючого випромінювання, це викликає утворення лавини вільних електронів, і до анода лічильника прямує багато елек­тронів. Інертні гази створюють у корпусі газорозрядного лічильника умови для виникнення ударної іонізації, роз­ряджання забезпечує швидке набування електронами не­обхідної кінетичної енергії.

Перейти на сторінку номер: 1  2  3 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат