На сайті 11893 реферати!

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання.
Авторські права на реферати належать їх авторам.

Редукційний поділ - мейоз

Реферати > Біологія > Редукційний поділ - мейоз

Редукційний поділ - мейоз

Як вам відомо, процес запліднення організмів супроводжується злиттям ядер статевих клітин (гамет), унаслідок чого кількість хромосом у зиготі подвоюється. Таким чином, повинен існувати ме­ханізм, який би забезпечував зменшення (редукцію) кількості хро­мосом у статевих клітинах порівняно з нестатевими (соматичними). Саме таким явищем є редукційний поділ - мейоз (від грец. мейозіс — зменшення) — особливий спосіб поділу клітин, у резуль­таті якого кількість хромосом зменшується вдвічі й клітини перехо­дять з диплоїдного стану в гаплоїдний.

Мейоз відбувається шляхом двох послідовних поділів, інтерфаза між якими вкорочена, а в рослинних клітинах взагалі може бути відсутня.

У різних організмів мейоз буває на різних етапах розвитку. Залежно від цього розрізняють три типи ядерних циклів.

В одноклітинних тварин - споровиків (наприклад, малярійного плазмодія), деяких водоростей (хламідомонади) тощо більша частина життєвого циклу пред­ставлена гаплоїдними клітинами і лише запліднена яйцеклітина (зигота) - диплоїдна. Цей тип ядерного циклу відбувається із зиготичною редукцією, тобто першим поділом зиготи є мейоз.

У інфузорій, багатоклітинних тварин, голонасінних і покритонасінних рослин та ін. більша частина життєвого циклу представлена диплоїдними клітинами, і лише статеві клітини гаплоїдні. Такому типові ядерного циклу властива гаметична редукція, тобто мейоз передує утворенню статевих клітин (гамет).

У морських одноклітинних - форамініфер, вищих спорових рослин (мохів, па­поротей, хвощів, плаунів) ядерний цикл відбувається з проміжною редукцією: половина життєвого циклу цих організмів представлена гаплоїдними клітинами, а інша половина - диплоїдними. Так, у вищих спорових рослин мейоз відбувається під час спороутворення, тому нестатеве покоління (спорофіт) диплоїдне, а ста­теве (гаметофіт) - гаплоїдне.

Під час профази першого поділу (профази І) починається спіра­лізація хромосом, однак хроматиди кожної з них не розділяються. В подальшому гомологічні хромосоми зближуються, утворюють пари (кон'югація гомологічних хромосом). Цей процес починається в одній чи кількох точках, а потім поширюється на всю довжину хро­мосом. У цей час створюється враження, ніби в ядрі гаплоїдний набір хромосом, хоча насправді кожна складова цього набору являє собою пару гомологічних хромосом.

Підчас кон'югації може спостерігатися процес кросинговеру (від англ. кросинговер — перехрест), під час якого гомологічні хромосо­ми обмінюються певними ділянками. Внаслідок кросинговеру утво­рюються нові комбінації різних станів певних (алельних) генів, що е одним із джерел спадкової мінливості.

Через певний час гомологічні хромосоми починають відходити одна від одної. При цьому вже стає помітним, що кожна з хромосом складається з двох хроматид, тобто утворюються комплекси з чоти­рьох хроматид (тетради), зчеплених у певних ділянках. Спосте­рігається подальше вкорочення та потовщення хромосом; у кінці фази гомологічні хромосоми розходяться, тобто тетради розпадають­ся. Зникають ядерця, руйнується ядерна оболонка і починається фор­мування веретена поділу.

У метафазі першого мейотичного поділу (метафазі І) нитки ве­ретена поділу прикріплюються до центромер гомологічних хромо­сом, які лежать не в площині екваторіальної пластинки, як при мі­тозі, а по обидва боки від неї.

Під час анафази першого мейотичного поділу (анафази І) гомо­логічні хромосоми відділяються одна від одної і рухаються до про­тилежних полюсів клітини. Центромери окремих хромосом не роз­діляються і тому кожна хромосома складається з двох хроматид. У кінці фази біля кожного з полюсів клітини збирається половинний (гаплоїдний) набір хромосом. Розходження окремих гомологічних хромосом кожної пари є подією випадковою, тобто невідомо, яка з них відійде до того чи іншого полюса клітини. Це також є одним з джерел спадкової мінливості.

У телофазі першого мейотичного поділу (телофазі І) формуєть­ся ядерна оболонка. У тварин і деяких рослин хромосоми деспіралізуються і здійснюється поділ цитоплазми; у багатьох рослин він може і не відбуватись. Отже, внаслідок першого мейотичного поділу ви­никають клітини або лише ядра з гаплоїдним набором хромосом. Інтерфаза між першим і другим мейотичними поділами вкороче­на, молекули ДНК в цей час не подвоюються, а в клітинах багатьох рослин Інтерфаза взагалі відсутня, тож вони відразу переходять до другого мейотичного поділу.

Під час профази II спіралізуються хромосоми, кожна з яких скла­дається з двох хроматид, зникають ядерця, руйнується ядерна обо­лонка, центріолі переміщуються (якщо вони є) до полюсів клітин, починає формуватися веретено поділу. Хромосоми наближуються до екваторіальної пластинки.

У метафазі II завершуються спіралізація хромосом і формуван­ня веретена поділу. Центромери хромосом розташовуються в один ряд уздовж екваторіальної пластинки, і до них приєднуються ни­тки веретена поділу.

В анафазі II діляться центромери хромосом і хроматиди розходяться до полюсів клітини завдяки вкороченню ниток веретена поділу.

Під час телофази II хромосоми деспіралізуються, зникає вере­тено поділу, формуються ядерця та ядерна оболонка. Завершується телофаза II поділом цитоплазми. Отже, у результаті другого ме­йотичного поділу число хромосом залишається таким, як і після пер­шого, але кількість ДНК, унаслідок розходження хроматид до до­чірніх клітин, зменшується вдвічі.

Таким чином, після двох послідовних мейотичних поділів мате­ринської диплоїдної клітини утворюються чотири гаплоїдні дочірні, кожна з яких має однаковий набір генів, але окремі гени різних до­чірніх клітин можуть перебувати у різних станах (представлені різ­ними алелями). Тобто дочірні клітини, що утворилися, можуть від­різнятися за спадковою інформацією.

Біологічне значення мейозу. Якби під час мейотичних поділів не зменшувалася кількість хромосом, то в кожному наступному по­колінні при злитті ядер статевих клітин вона зростала б удвічі. За­вдяки мейозу дозрілі статеві клітини одержують гаплоїдний набір хромосом. При заплідненні відновлюється диплоїдний набір, при­таманний даному виду організмів. Так зберігаються постійні для кожного виду набір хромосом (каріотип) та кількість ядерної ДНК.

Обмін ділянками між гомологічними хромосомами (процес кро­синговеру), а також незалежне розходження гомологічних хромо­сом до різних дочірніх клітин, сприяє спадковій мінливості, оскіль­ки з'являються нові комбінації різних станів (алелей) певних генів. З кожної пари гомологічних хромосом (материнської та батьківсь­кої), які входять до хромосомного набору диплоїдних організмів, у гаплоїдному наборі статевих клітин міститься лише одна. Вона може бути батьківською, материнською, батьківською з ділянкою мате­ринської або материнською з ділянкою батьківської.

Перейти на сторінку номер: 1  2 Версія для друкуВерсія для друку   Завантажити рефератЗавантажити реферат